翻訳と辞書
Words near each other
・ Auglaize Township, Allen County, Ohio
・ Auglaize Township, Camden County, Missouri
・ Auglaize Township, Ohio
・ Auglaize Township, Paulding County, Ohio
・ Augland
・ Auglandsbukta
・ Auglandskollen
・ Auglandslia
・ Augmate
・ Augment
・ Augment (app)
・ Augment (linguistics)
・ Augmentation (algebra)
・ Augmentation (music)
・ Augmentation (pharmacology)
Augmentation ideal
・ Augmentation industries
・ Augmentation of Benefices Act 1665
・ Augmentation of Benefices Act 1677
・ Augmentation of honour
・ Augmentation pharyngoplasty
・ Augmentation Research Center
・ Augmentative
・ Augmentative and alternative communication
・ Augmented assignment
・ Augmented Backus–Naur Form
・ Augmented browsing
・ Augmented cognition
・ Augmented Dickey–Fuller test
・ Augmented dodecahedron


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Augmentation ideal : ウィキペディア英語版
Augmentation ideal
In algebra, an augmentation ideal is an ideal that can be defined in any group ring. If ''G'' is a group and ''R'' a commutative ring, there is a ring homomorphism \varepsilon, called the augmentation map, from the group ring
: R()
to ''R'', defined by taking a sum
: \sum r_i g_i
to
: \sum r_i.
Here ''r''''i'' is an element of ''R'' and ''g''''i'' an element of ''G''. The sums are finite, by definition of the group ring. In less formal terms,
: \varepsilon(g)
is defined as 1''R'' whatever the element ''g'' in ''G'', and \varepsilon is then extended to a homomorphism of ''R''-modules in the obvious way. The augmentation ideal is the kernel of \varepsilon, and is therefore a two-sided ideal in ''R''(). It is generated by the differences
: g - g'
of group elements.
Furthermore it is also generated by
: g - 1 , g\in G
which is a basis for the augmentation ideal as a free ''R'' module.
For ''R'' and ''G'' as above, the group ring ''R''() is an example of an ''augmented'' ''R''-algebra. Such an algebra comes equipped with a ring homomorphism to ''R''. The kernel of this homomorphism is the augmentation ideal of the algebra.
Another class of examples of augmentation ideal can be the kernel of the counit \varepsilon of any Hopf algebra.
The augmentation ideal plays a basic role in group cohomology, amongst other applications.
==References==

*
*Dummit and Foote, Abstract Algebra

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Augmentation ideal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.